Mechanism of CO oxidation on Pt(111) in alkaline media.

نویسندگان

  • J S Spendelow
  • J D Goodpaster
  • P J A Kenis
  • A Wieckowski
چکیده

Electrochemical techniques, coupled with in situ scanning tunneling microscopy, have been used to examine the mechanism of CO oxidation and the role of surface structure in promoting CO oxidation on well-ordered and disordered Pt(111) in aqueous NaOH solutions. Oxidation of CO occurs in two distinct potential regions: the prepeak (0.25-0.70 V) and the main peak (0.70 V and higher). The mechanism of reaction is Langmuir-Hinshelwood in both regions, but the OH adsorption site is different. In the prepeak, CO oxidation occurs through reaction with OH that is strongly adsorbed at defect sites. Adsorption of OH on defects at low potentials has been verified using charge displacement measurements. Not all CO can be oxidized in the prepeak, since the Pt-CO bond strength increases as the CO coverage decreases. Below theta(CO) = 0.2 monolayer, CO is too strongly bound to react with defect-bound OH. Oxidation of CO at low coverage occurs in the main peak through reaction with OH adsorbed on (111) terraces, where the Pt-OH bond is weaker than on defects. The enhanced oxidation of CO in alkaline media is attributed to the higher affinity of the Pt(111) surface for adsorption of OH at low potentials in alkaline media as compared with acidic media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethanol electrooxidation on the Co@Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media

In this study, the electrocatalytic activity of the Co@Pt core-shell nanoparticles toward the ethanol oxidation reaction has been investigated by cyclic voltammetry and chronoamperometry in acidic and alkaline media in details. The physicochemical data obtained in alkaline solution are compared to those in acidic solution. The obtained results demonstrate that while in the both media Co@Pt core...

متن کامل

Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media

Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...

متن کامل

CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions

The electrochemistry of CO on a bare Pt(111) electrode as well as a Pt(111) electrode modified with pseudomorphic thin palladium films has been studied in alkaline solution by means of Fourier transform infrared (FTIR) spectroscopy. First Pd films were prepared and well characterized in UHV and subsequently transferred into the electrochemical cell for the registration of the voltammetric profi...

متن کامل

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

Study on Electrochemical Oxidation of m-Nitrophenol on Various Electrodes Using Cyclic Voltammetry

The electrochemical oxidation behavior of m-nitrophenol (m-NP) was studied comparatively on glassy carbon electrode, Pt electrode, PbO2 electrode, SnO2 electrode, and graphite electrode using cyclic voltammetry. The cyclic voltammetry measurements were performed in acidic (1 M H2SO4, pH 0.4), neutral (1 M Na2SO4, pH 6.8), and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 19  شماره 

صفحات  -

تاریخ انتشار 2006